This dihydrochloride (1 g .) was dissolved with 20 ml . of anhydrous methanol, and the theoretical amount of silver carbonate was added slowly with stirring and cooling. Stirring was continued for 15 min ., and the silver chloride was filtered. The methanol solution was evaporated under reduced pressure. The residue (VIII) was a white crystalline powder ($0.75 \mathrm{~g} ., 95 \%$).

Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 44.29 ; \mathrm{H}, 7.43 ; \mathrm{Cl}, 26.15 ;$ $\mathrm{N}, 10.32$. Found: $\mathrm{C}, 44.2 ; \mathrm{H}, 7.6 ; \mathrm{Cl}, 26.2 ; \mathrm{N}, 10.21$.

VIII dihydrochloride was thin layer chromatographed with cellulose powder, using 1-butanol-acetic acid-water (60:20:20) as a solvent. The chromatogran, developed with a 2,0 solution of ninhydrin, showed a single orange-red spot ($R_{f} 0.67$). The base showed a single violet spot ($R_{\mathrm{f}} 0.64$).

Precipitation of the Reineckates of Valine, Phenylalanine, Ornithine, Hydroxyproline, and Aspartic Acid. Isolation of the Amino Acids from their Respective Salts Using a Cation-Exchange Resin.-These amino acids were precipitated as their reineckates from their respective aqueous solutions, acidified with $\mathrm{HCl}(\mathrm{pH}$

1-2), by the addition of the theoretical annount of $5 c_{c}^{C}$ aqueous anmonium reineckate solution. These salts were all crystalline but without definite melting points.

The amino acids were isolated from their salts almost quantitatively. First, the salts were dissolved in acetone and diluted with a double volunte of water. Then these solutions were percolated through 1.5 equiv. of Anmberlite IR 120 ($100-200$ mesh). The resin was washed by percolation with water until the red color due to reinecke accid disappeared. The amino acid adsorbed by the resin was eluted with $5-10 \%$ hydrochloric acid recovered as the pure hydrochloride salt by concentration of the eluate.

Acknowledgment.-The writers are indebted to Dr. E. Pella for the microanalyses, to Dr. G. Tosolini for the chromatograplic data, and to Mr. A Cantaluppi for technical collaboration.

Further Investigations of Heterocyclic Alkylating Agents ${ }^{1}$

Robert K. Prestor, Richard MI. Peck, Evelyn R. Brecninger, Ayn J. Miller, anid Hugh J. Creech

The Institute for Cancer Research, Philadelphia 11, Pennsylvania
Received December 20, 1963

Abstract

The exceptional antitumor and mutagenic activities displayed by a quinacrine derivative of a monofunctional nitrogen mustard, 2-methoxy-6-chloro-9-[3-(ethyl-2-chloroethyl)aninopropylaminolacridine, led to the synthesis of 50 additional mono- and difunctional analoge of acridine, quinoline, and quinazoline. The acridine nucleus was found to exert a pronounced activating influence on the nitrogen mustard moiety. ()n a molar basis, the "half-mustard" 2-methoxy-9-[3-(ethyl-2-chloroethyl)aminopropylaminolacridine dihydrochloride was considerably more effective against the Ehrlich ascites tumor than methyllis(2-chloroethyl)amine hydrochloride: the corresponding bis analog was even more potent. Substitution of a 6 -chloro group into 2 -nethoxyarridine decreased the molar activities of the mono and bis nustards. Several monofunctionalnitrogen mustards of quinaroline and quinoline displayed moderate antitumor activity, but only at high nolar dosages; other alosely related analogs were inactive. The relationships between the chemical structures and antitumor activities of the compounds are presented.

From our earlier work ${ }^{2-4}$ it was evident that the unusual antitunor activity of certain monofunctional nitrogen mustards was deternined by the chemical structure of the heterocyclic nucleus that was attached through a side chain to the mono-2-chloroethylanino group. The first nitrogen "lalif-nustard" that displayed pronounced activity in prolonging the survival time of nice bearing several varieties of ascites tumors ${ }^{2}$ and exhibited an extraordinary mutagenic capability in Drosophila ${ }^{5}$ was 2-methoxy-6-chloro-9-[3-(ethyl-2chloroethyl)aminopropylanino Jacridine dihydrochloride. ${ }^{4}$ On the other hand, the partial acridine structures, 7 -chloro- and 6 -methoxy- - - 3 -(ethyl-2-chloroethyl)aminopropylamino]quinoline dihydrochloride, ${ }^{2}$ and the secondary amine, 2 -nlethoxy- 6 -chloro- 9 - [2-(2-chloroethyl)aminoethylanino]acridine dihydrochloride, showed no antitumor activity. Since their corresponding bis mustards were highly effective, it is apparent that both the heterocyclic nucleus and the presence of an alkyl group on the nitrogen containing the 2 -chloroethyl group are of critical inportance in

[^0]activating the monofunctional mustard grouping.
It appeared worthwhile to determine whether the 2 -methoxy or the 6-chloro group on the acridine nucleus played a significant role in this activation and whether any modifications of simpler heterocyclic nuclei, such as quinoline and quinazoline, would impart enhanced physiological activity to the "half-mustards." The effects of attachment of the nitrogen-mustard moiety at the 4-position of variously substituted quinolines, at the 2-position of quinoline and lepidine, at the 4 position of quinazoline and 6-chloroquinazoline, and at the 8 -position of 6 -methoxyquinoline, as well as the presence of an N-alkyl substituent on the 4-quinolyl nitrogen, were investigated both in the mono and bis forms, as slown in Table I. The letters A to X in the first column of Tables I and II represent the heterocyclic group Ar in the formula $\mathrm{Ar}-\left(\mathrm{O}-\mathrm{N}<\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{X}\right.$ at the top of Table I. The heterocyclic structures corresponding to these letters are as follows.

Most of the tertiary amino side chains were added stepwise to the nucleus by condensing 4 -chloroquinoline with an alkylaminoethanol, chlorinating, and condensing with diethanolamine, or an analog, to give the mustard precursor. However, when the readily crystallized nitrate salts ${ }^{6}$ of the first hydroxy intermediate,
(6) R. M. Peck. J. Org. Chem. 28. 1998 (:963).

c.g., I, were used in the chlorination procedure, the products were found to contain an additional nuelear

chlorine substituent resulting from the presence of nitrate as oxidizing agent in the chlorimating medium. By degradation to the corresponding 4-hydrosy compound and chlorination to the known 3,4,7-trichloroquinoline, ${ }^{7}$ the position was established, as given in II. Further confirnation was furnished by elimination of the other isomeric $4,7, x$-trichloroquinolines, all four of which are known, and by the analogous : 3 -halo substitution reaction of Surrey and Cutler. ${ }^{7}$

A different side reaction encountered in the 2-lepidyl series led to cyclization of the w-chloro compound, which prechuded its condensation with dicthanolanine and necessitated presynthesis of the entire side-chain skeleton before condensation with the heteroeyclic nucleus, as described in the Experimental part. Cycli-

zation of Illa oc:curred spontaneously upon neutralizing its hydrochloride in aqueous solution; IILb eyelized only on heating with excess amine. Analogs of 3.3 -dihydro-:3,5-dimethyl-1-H-imidazo $[1,2$-a $]$-quinolin-10ium iorlide (IVa) have been reported by Osbond; although compounds having the skeleton of $1,2,3,7-$ tetrahydro- 4,6 -dimethylpyrimido- $[1,2-a]$ quinolin-10ium iodide (IV)) have been recorded, no compounds with analogous bond structure have bean reported. By an adaptation of this reaction an anatog of IVa bearing a mustard side chain was prepared for testing.

A nomber of compounds necessary to the sunthesis of the listings in Table I, other than their immediate. precursors, are given in Table II: representative procedures are deseribed in the Experimental part.

Experimental

. Melting points were taken in open capillary lnhes in it Hersh. berg apparatus using total inmersion thermonieters and are reported as uncorrected values.

All the 2-chloroethyl compounds in this paper were prepared by the action of excess thionyl chloride on their hydroxy precursors. ${ }^{3}$ The precursons listed in Table I were, for the nost part, prepared by interaction of the orresponding side chain and chloroheterocycle by known methods ${ }^{3}$ and from known rearcints except those few whose preparations are given below. Other precursors in Table I include those whose side chains were built up in two steps from compounds listed in Table II. A procedıre
t7) A. R. Surrey and R. A. Cutler. J. Am. Chem. Soc. 68. 2770 (19t69: A. R. Surrey and H. F. Hammer, ibid., 68, 1244 (1940): R. E. lutz, (i. Aslıburn, J. A. Freek, R, H. Jordan, N. H. Leake, T. A. Martin, R. J. Rowlett, and J. W. Wilson, ibid., 68, 1285 (1946).
(8) J. M. Osbond, J. Chem. Soc., 18.33 (1950).

of general spplication to this sequence is included in the synthesis of connpounds 4 and 5 in Table II and M-2 in Table I. The hydrochlorides listed in the tables were recrystallized from ethanol or aqueous ethanol, with the addition of acetone and/or ether where necessary with the more soluble compounds. The preparation of two derivatives of 8-amino-6-methoxyquinoline is given below.

N-Methyl-N-2-hydroxyethylethylenediamine. ${ }^{2}$ - The preparation of t?is componind from methylethanolamine and 2-bromoethylamine hydrobromide was carried out by the procedure used for the corresponding N-ethyl compound. ${ }^{4}$ A second fractionation gave a 32% yield of product, b.p. $103-104^{\circ}(8 \mathrm{~mm}$.).

Anal. Caled. for $\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}: ~ \mathrm{C}, 50.76 ; \mathrm{H}, 11.95 ; \mathrm{N}_{2}, 23.71$. Found: C, 51.18; H, 12.12; N, 24.69.
$\mathbf{N}, \mathbf{N}^{\prime}$-Dimethyl-N'-2-hydroxyethylethylenediamine and 2-[2-(2-Hydroxyethylmethylaminoethyl)methylamino]lepidine Di-hydrochloride.-The first compound was prepared by an identical prosedure from methylethanolamine and 2-chloroethylmethyi:mnine hydrowhoricle. The redistilled fraction, b.p. $114-117^{\circ}$ (9 mm .). was oftained in 44% yield. A mixture of 14 g . each of this product and of 2-chlorolepidine was stirred and heated at an internal temperature of $130-135^{\circ}$ (exothermic), taken up in dilnte asetic arid, and filtered from a small amount of unreacted 2-c!lorolepidite. The filtrate was made alkaline, extracted with ether, and concentrated. A slight excess of concentrated lydrochloric acid was added to the residue, water was removed in vacuo, and acetone was added to precipitate crystalline S-2.

N-Methyl-N', \mathbf{N}^{\prime}-bis(2-hydroxyethyl)ethylenediamine
and 7-Chloro-4-12-bis(2-hydroxyethyl)amingethylmethylaminolquinoline Dihydrochioride.-Substitution of diethanolamine in t ! 1 a above procedure gave the first compound. The redistilled fraction, b.p. $90-100^{\circ}(10 \mu)$, obtained in 25% yield, was condensed with 4,7-dichloroquinoline at 120° for 2 hr . to give P-8 (Table I). The sance compound was obtained by the reartion of 7 -chloro-4-(2-chloroethyl)methylaminoquinoline hydrochloride (P-11, Table I) and diethanolamine in slightly higher yield.

8-[2-(2-Hydroxyethylethylamino)ethylamino]-6-methoxyquinoline Dihydrochloride.-This compound was prepared by $\mathrm{t}^{\mathrm{l}} \mathrm{e}$ methanolic hydroxyethylation of 30 g . of 8-(2-ethylamino-ethylamino)-6-methoxyquinoline ${ }^{10}$ by methods previously employed. ${ }^{4}$ The product was distilled twice in vacuo, and a $21-\mathrm{g}$.

[^1]fraction boiling at $140-160^{\circ}(50 \mu)$ was aceepted as product. A sample was converted to the hydrochloride (H-2, Table I).

2- [2-(6-Methoxy-8-quinolylamino)ethylimino]diethanol
Dihydrochloride.-A crude mixture containing the necessary chloro side chain was prepared by dropwise addition of a chloroform solution of 0.5 mole of thionyl chloride into a stirred chloroform solution of $e .5$ mole of triethanolamine, refluxing, decanting, slurying the residue with ethanol, removing the restalline ti iethanolanine hydrochloride by filtration, and precipitating tre crude, oils, chlorinated product by dilution with ether. It weighed 14 g . and was condensed with 30 g . of 8 -anino- 6 -methoxyquinoline by method I of Drake, et al. ${ }^{11}$ The product was taken up in ethyl acetate (after 20 g . of excess 8 -amino-6-niethoxyquinoline was recovered), concentrated, and molecularly distilled twice at $160^{\circ}(0.2 \mu)$. It weighed 9.6 g . and formed a dihydrochloride (H-4, Table I).

7-Chloro-4-(2-hydroxyethyl)methylamino-2-methylquinoline. -A mixture of 21 g . (0.10 mole) of 4,7-dichloro-2-methylquinoline and $37 \mathrm{~g} .(0.5 \mathrm{~mole})$ of methylethanolanine was stirred and heated for 3 hr . at $110-115^{\circ}$ (internal), and taken up in dilute acetic acid. A solution of 60 ml . of saturated sodium nitrate precipitated 34 g . of crude product. This was dissolved in water and made alkaline to give 17.9 g . (71.5%) of the free base, m.p. 103-105 . An analytical sample melted at $102.5-104^{\circ}$.

Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}: \mathrm{C}, 62.26 ; \mathrm{H}, 6.03 ; \mathrm{N}, 11.17$. Found: $\mathrm{C}, 62.00,62.21 ; \mathrm{H}, 6.05,6.16 ;-1,11.19$. The nitrate (5, Table II) was precipitated from a solution in dilute acetic acid with sodium nitrate and recrystallized from water.

4-(2-Chloroethyl)methylamino-3,7-dichloro-2-methylquinoline Hydrochloride (4, Table II). -To 30 ml . of stirred thionyl chloride was added 5.0 g . of the nitrate salt of 4 -(2-hydroxyethyl)-methylamino-7-chloro-2-methylquinoline, with cooling. The solution was kept for 40 hr . at room temperature, excess thionyl chloride was removed in vacuo, and the residue decomposed with a small amount of ethanol. Solvent was again removed in vacuo and the residue was slurried with $1: 1$ ethanol-acetone and filtered. The yield was 4.75 g. , m.p. $196-200^{\circ}$; it was recrystallized in 80% recovery to give an analytical sample.
(10) R. C. Elderfield. W. J. Gensler, J. D. Head. H. A. Hageman, C. H. Kremer, J. B. Wright, A. D. Holley, B. Williamson, J. Galbreath, L. Wiederhold, R. Froghardt, S. M. Kupchan, T. A. Williamson, and O. Birstein, J. Am. Chem. Soc., 68, 1524 (1946).
(11) N. L. Drake. R. A. Hayes, J. A. Garman, R. B. Johnson, G. W. Kelley, S. Melamed, and R. M. Peck, itid., 71, 455 (1949).

Tism: 11

1.-ij	\therefore	H: 1	73	151-154	45) 5	4.16	- 14	41.15)	46. 13	4.32	8.36	41.70
	$\begin{aligned} & \mathrm{CH}_{2} \mathrm{CH} \mathrm{Cl} \\ & \mathrm{CH}_{3} \end{aligned}$											
L-i	\cdots		411	18'911	49.75	3.83	96	36.74	49 , ふ!	38	(1). 1	37.20
1.-	$\begin{gathered} \mathrm{CH}_{4} \mathrm{CH}_{4} \mathrm{Cl} \\ \times \mathrm{HCH}_{4} \mathrm{CH}_{2} \mathrm{Cl} \\ \mathrm{CH}_{3} \end{gathered}$!	$\therefore \overline{5} 8$	47.93	3.39	11.15	3n.62	4. 31	3.411	111.24	3n.103
(1-:)	\therefore	HCl	(is)	198-201	51.15	+.95	() 17	3. 3.3	91.37	5. 10	8.46	34.84
	$\underset{\mathrm{CH}_{3}}{\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}}$											

P-11)	\cdots	HCl	(1)	10N-201	51. 15	4.35	9.17	34.31	31.34	5. 15	(1).011	34.41
$\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{Cl}$												
P-11	N	HCl	511	$191-19$	54.3:1	5.10	0.75	$\underline{-4.67}$	it 193	5. \square^{3}	:1.37	24.90
$\begin{aligned} & (\mathrm{CH})_{8} \mathrm{OH} \\ & \mathrm{CH} \end{aligned}$												
I-12	\therefore	HCl	9	185-159	51.14	4.05	0.15	34.31	61.48	5. 34	9.15	34.33
$\left(\mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{Cl}\right.$												

" Vahus are either single analyses or averages of checks.

3,7-Dichloro-4-12-bis(2-hydroxyethyl)aminoethylmethyl-aminol-2-methylquinoline Dihydrochloride (M-2, Table I).-A mixture of 2.1 g . of 4 (Table II) and 3 g . of diethanolanine was stirred in a heating bath (120-130) for 3 lir., cooled, and partitioned hetween water and rhboroforn-ether. The organic layer was washed with water and then extracted with 10 ml . of 1 I hydrochloric arid. This extract plus a small water washing was concentrated in vacuo, and the residue was taken up in a smatl mmoment of ethanol plus $: 3$ drops of roncentrated hydrochloricasid. Addition of acetone precipitated the product which (rystallized to give 2.2 g . (80 ,) of yellow (rystals, m.p. $174 . \overline{\mathrm{o}}$ 17°. Rerrastallization gave tho analytioal sample reported in Table I.

Proof of Structure of Compound 6 1 Table II. - All the 3--hboronininolines in this paper were made be the oxidative chorination reaction described thove. A $3.0-\mathrm{g}$. sample of 6 Was reflimed for 45 hr . in 15 ml . of $6 N$ hydrochloric acid and conded overnight. Thre crnde 3,7-dichloro-4-(fininolinol was filtereal, dissolvod in $1 N$ sodimn hydroxide, and repreripitated with arefte arid, yelding 0.90 g . This was refluxed for 5 min . in t mh. nl phosphorus oxyohboride, rooled, decomposed with ice and wioter. and fitered. Ther trichlororninoline obtained in alnost quantitalive vield was perrestallized from potrolenm rther to vield pure 3,4,7-tichloroquinoline, 111.p. 115.5-116. ${ }^{\circ}$
2.3-Dihydro-3,5-dimethyl-1 H-inidazo [1,2-a] quinolin-10-ium lodide. - A sohntion of 2.1 g of 2 -(2-chloroethylmethylamino)-
lepidine hydrodiloride (S-17. Table I) in 10 mat. of water was neutralized slowly with an exact equivalent of 1 N sotimm bydroside. The base precipitated, redissolved as revization orcorred, then precipitated again as the quaternary salt. After cooling and filtration, it was redissolved in warm water, and an excess of sathrated potassium iodide was added. The sparingly solnble indide precipitated, was filtered, and recrystallized fronn water. The yield was $0.50 \mathrm{~g} .\left(20^{\circ}\right.$; $), \mathrm{m} . \mathrm{p} .241-244^{\circ}$.

 I, 38.69, 39.11].

1,2,3,4-Tetrahydro-4,6-dimethylpyrimido $\{1,2$-r \mid quinolin-10ium Iodide.-Componnd \mathbf{X}-1 (Table II), 2-(3-rhloropropytmethyaminolepidine hydrochloride, did not rarli\%e on neutralization as did its analog. Th an attempt, therefore to allayate. ethraminoethanol, 10.5 g . enth of $\mathbf{X}-1$ and the :mine wore heated for 1 hr. on a stann cone. Ender these conditions the self-allylation reaction ocrurred and the reaction mixtmre was completely water soluble. Addition of excess, saturated potassium iodide precipitated 9.9 g . of product. m.p. 211-215 . Resrystallization from water gave $8.5 \mathrm{~g} .(68 \%)$, 1m.p. $215-217^{\circ}$.

 K. 1 S ; I, 36.56, 37.00.

6-Chloro-2-methoxy-9-(2-(dichloroacetylamino)ethylamino-acridine.-- A mixtirr of 2.0 g . atrh of 6,9-dichloro-2-11tethoxy-
acridine and ethyl dichloracetate and 3 ml . of ethanol was warmed on a steam cone for 3 hr ., cooled, and filtered. The product weighed 2.0 g .; recrystallization from ethanol gave 0.9 g ., in.p. 187-191 ${ }^{\circ}$. Analytical results are given in Table $\mathrm{I}, \mathrm{U}-\mathbf{1}$.
\mathbf{N}-(7-Chloro-4-quinolyl)-N-methylethanolamine Methane-sulfonate.-To 25 ml . of methanesulfonyl chloride was added 2.0 g. of N -(7 -chloro-4-quinolyl)-N-methylaminoethanol. The compound dissolved in about 1 hr . The solution was allowed to stand an additional 3 hr ., concentrated in racho, taken up in ethanol and water, cooled, made alkaline, and extracted with ether to remove unchanged starting material. The supernatant liquid was decanted from the heavy oil which was thell washed by decantation. Excess hydrochloric arid was added (cold), water was removed in vacio, and the residue taken up in etlianol. Addition of ether precipitated the product, which was recrystallized from ethanol to give $1.0 \mathrm{~g} .\left(34 C_{G}\right)$, m.p. 117.5-118.5 ${ }^{\circ}$. Analytical results are reported in Table I, V-2.

Biological Results.-The results of our studies of the antitumor activity of the compounds are presented in the same summarized form used previously. ${ }^{2}$ In the present report, however, only the observations with a hypotetraploid clone of Ehrlich ascites tumor (EF) in albino mice (ICR Swiss) are given. - Mice, weighing $24-27 \mathrm{~g}$., were inoculated intraperitoneally with 7 million cells of the EF ascites tumor; on the following day and for the next 2 days, the test compound, dissolved in physiological saline, was injected intraperitoneally into the mice.

The control series of mice for each experiment was injected with saline on days 1,2 , and 3 after tumor inoculation; the mean survival time of the control mice was 16 ± 1 days over the 2 -year period. Survival data for each group of mice were recorded daily and the experiments were terminated between days 45 and 51 , namely, at the end of the period that was 3 times the mean survival time of the controls for that particular series of tests. Approximately 300 mice were used in each weekly test; the results of the antitumor tests on each compound were based on 100-200 mice.

Dosages are expressed as the number of μ moles of compound (injected on each of the 3 days) per kg. of body weight of mouse. The activity range of a compound covers the lowest to the highest dosages that produced at least an 80% increase in survival time over that of its control group of mice. Dosages that were about 20% greater than the high level in the range usually killed $2,-40 \%$ of the mice within ? days of the last injection of compound.

The degree of activity of a compound was calculated statistically from the survival graphs. A value of 3.0 would indicate that all the mice in the experimental group had lived until the time of sacrifice at tis-is days; with potent compounds. this level of activity was often noted at one or more intermediate levels within the dosage range. An average value of 3.0 , however, cannot be attained by any compound because of our definition of the activity lange, which utilizes a degree of 1.8 at the low and high ends of the dosage range. The average degree of activity is determined, of course, by the sharpness of the rise to, and fall from, the maxinum effect and the existence of any plateau at the $i=8$ intermediate testing levels between the lowest and highest effective dosages. A value between 1.0 and 1.4 means that the compound did not cause a significant increase in the survival tine of the mice over that of the controls under our conditions of test; in these instances, the dosage range listed is simply that
ennployed up to the toxic level for the compound. The ratio of the high to the low dosages in the activation range is an expression of possible therapeutic usefulness, compounds with a relatively wide range obviously having definite advantages.

Considerable variations were noted in the activities of the compounds, both on a molar basis and on an antitumor basis, dependent on the type of heterocyclic uncleus and its substituents, on the length of the alkyl side chain between the nitrogens, and whether the nitrogen mustard portion of the molecule was mono- or bifunctional.

For ready comparison of the current observations with earlier results, ${ }^{2}$ it may be mentioned that the potent monofunctional nitrogen mustard, 6-chloro-2-methoxy-9-[3-(ethyl-2-chloroethyl)aminopropylamino]acridine dihydrochloride, showed an activity range of $1.5-4 \mu$ moles $/ \mathrm{kg}$. and an activity degree of 2.5 against the EF tumor. The analog in which ethylene replaced propylene between the nitrogens of the side chain had a range of $4-16 \mu$ moles kg . and a degree of 2.4. The corresponding bis nitrogen mustards showed values of $0.5-1.5 \mu$ moles, kg . and a degree of 2.3 for the propyl derivative, and $4-24 \mu m o l e s / \mathrm{kg}$. and a degree of 2.4 for the ethyl derivative. Nitrogen mustard, itself, had values of $1.5-8 \mu \mathrm{moles} / \mathrm{kg}$. and a degree of 2.4 , and the simple aminoalkyl halfmustard N -(2-chloroethyl)-N-ethyl-1,3-propylenediamine dihydrochloride had an activity degree of 2.3 at $2 \overline{-}-60$ minoles $/ \mathrm{kg}$. The importance of the alkyl group on the nitrogen containing the 2-chloroethyl group was indicated by the fact that 6 -chloro-2-methoxy-9-[3-(2-chloroethyl)aminopro pylamino]acridine displayed only slight activity at high dosage levels (45-75 μ moles $/ \mathrm{kg}$.) and the ethylamino homolog was inactive. Although the bis nitrogen mustards of 7 -chloro- and of 6-methoxyquinoline were highly active, their corresponding ethyl-2-chloroetliyl forms were devoid of activity against ascites tumors.

Froni Table I (A-1) it is evident that activity in the 6-chloro-2-methoxyacridines was retained when a methyl group replaced the ethyl group on the nitrogen containing the 2-chloroethyl group, although the dosage requirement was about threefold greater than that of the N-ethyl analog. The homolog with a metliylbutylamino side chain and an N-ethyl group (A-3) was highly active at a range which approximated that of the reference monofunctional mustard containing the propylamino side chain.

It was of interest to determine the importance of the 2 -methoxy and the 6 -chloro groups on the acridine nucleus. From a comparison of the mustards B-1 and B-3 with their reference compounds, it is clear that the nuclear chloro substituent depressed the molar activity. The 2-methoxyacridine derivatives were found to be the most potent antitumor compounds so far studied in our tests with ascites tumors. The ethylamino analog was also highly active at a reasonably low molar dosage (B-5). Deletion of the methoxy group to give C-1 and C-3 showed that the unsubstituted acridine nucleus was just as potent an activator of the nitrogen mustard grouping as 2-methoxy-6-chloroacridine. Hydrogenation of an end ring of acridine resulted in a considerably increased dosage require-
ment for a display of activity in the bis mustard (D-5). Further alteration in which a tertiary nitrogen was attached to the nucleus caused profound changes in that the monofunctional nitrogen mustard was inactive (D-1) and the bis form was active only at high dosage levels (D-3).
Although the monofunctional mustards of (i-me-thoxy- and 7 -chloroquinoline obtained previously ${ }^{*: 3}$ had displayed mo activity, we desided to explore a variety of muclear substituted and unsubstituted tworing structures to deternine whether the acridine ring systen was specifically required for an increase in the molar and biological activities of the nitrogen mustard moicty. Although not strictly comparable in structure, E-1 was inactive. The quinazoline monofunctional nitrogen mustard (\mathbf{F}-1) and the bis mustards (F-3 and G-1) were active against the aseites tumor but only at high molar dosagen. In the (i-methory-8amino(puinoline series, moderate activity was shown by the monofunctional mustard ($\mathbf{H}-\mathbf{1}$) and high activity by the bis form ($\mathbf{H}-3$). lacplacement of the termimal benzene ring in "-methoxyacridine by two methyl groups to give a 2.3 -dinethel-i-inethoxypuinoline (I-1) resulted in loss of activity in the monofunctional mustard. On the other hand. the presenee of a phenyl group at the -2 -position of quinoline led to moderatc antitumor activity in the Xecthyl monofunctional mustard (J-3) and the N-methyl analog (J-1). A similar degree of offectivencss against the Ehrich thnor was noted with the p-chlorophenyl analogn (K-1 and K-3) at higher dosage ranges.
The bis mustards (L-1. L-3. L-5. M-1, and M-5) of a series of 3,7 -dichloropumolines displayed exeeptionally broad. effective ranges but the monofuretional mustard (M-3) had only slight activity. The effects of structural variations in the side chain of 7 -chloroquinoline were also studied and it was found that the bis forms ($\overline{\mathbf{P}-7}$ and $\mathbf{P - 9}$) were active but the mon', functional mustards (P-1. P-3 and P-5) were incffective A similar situation prevailed in the 6 -methoxy-
quinoline series ($\mathbf{Q}-1$ and $\mathbf{Q}-3$) with toxicity, however. brite erident at low dosage levers.

In contrast. a methyl group in the $\overline{7}$-chlororguinoline nuctens onctasomally conferred moderate activity on the monofunctional mustards ($\mathrm{N}-3$ a and S-5 to $\mathrm{S}-11$). In the case of the last four compounds, it is interesting that the greatest melar activity was imparted by x isopropyl, followed in turn by X-propyl, X-ethyl, and X-methyl. The aromatic-type bis nitrogen mustard (S-19) and the monofunctional mustard with the secondary anine structure (T-1) were found to to inactive in keeping withour carlier olservations' on these typer of structures.

The minecellaneothes serics of eompounds ($\mathbf{U}-\mathbf{X}$), the emuphents of some of which are effective against certain types of thmors, were found to be inactive in ons tests with ascites tumors. The presence of quinacrine in the: compoonds ©-1 and U-2 did not confer activity on the two chloro side chains: the methanesulfonate and othylcmeimino derivative (V-2 and W-1) abso displayed no activity. The simple alkylamino nitrogen "half-nustard" Y. which was preparest to completc the series deseribed previously, ${ }^{1 \text { ? }}$ was moderatety effective against the ascites thmor at a redatioly high molar dosage similar to that of its . .- thyol refor ence componad.

Thus, althongh a moderate: degree of antitumer activity at high molar dosage is retained in certain monstinuctional nitrogen mustard derivatives of (quinazoline and uncthylquinstines. the only powerfint activator at the monent seems to be the intact acridine nucleus. This suggests the posibility that acridines may be minge in their ability to inpart bifuctional character to nitrogen "half-mustarl." The onservations of Lermannt indicate that the spatiat configuration of this hoterocyctic nucleus plays an important role in: the aperial reactivity of various acridiues with

Acridine and Quinoline Analogs of Nitrogen Mustard with Amide Side Chains ${ }^{1}$

Fiecrived Dermber 20, 1 IV:

Abstract

Several mono- and bifunctional nitrogen mustards atarlod to anmonalky derivatives of some arridines and (uinolines througla an amide linkage were cynthesized and studied with the use of ascites tumms. Since the arridine nurleus was again found to exert a powerful artivating influence on both the bis and mono nitrogen mustard moieties, the amide linkage was apparently not hydrolyzed to yield glycine mustard during these in vion tests. The presence of a bydrazine linkage in the side chain led to considerably decreased antitumor effectiveness.

One of the initial reasons for our study of quinotine and acridine nitrogen nustards was based on the observation ${ }^{2}$ that related carrier molecules (antimalarial

[^2]drugs) exhibited preferential localization in different tissues dependent on the chemical structure of the heterocyclic base. Thus, the use of a rariety of substituted quinoline and acridine carriers night permit the accumulation of the mustard moiety in specifi: tissues and presumably also in tumors of these tissues. The exceptionally great cliemical and biological activities shown by the acridine mono- and bifunctional

[^0]: (1) Supported by research Grants CA 02975 and CA 06927 from the Na . tional Cancer Institute. National Institutes of Health, U. S. Public Health Service.
 (2) H. J. Creech, E. Breuninger, R. F. Hankwitz, Jr., G. Polsky, and M. L. Wilson. Cancer Res., 20, 471 (1900).
 (3) R. M. Peck, R. K. Preston, and H. J. C'reech, J. Am. Chem. Soc., 81, 3984 (19:39).
 (4) R. M. Peck, R. K. Preston, and H. J. Creech. J. Org. Chem. 26, 3409 (1901).
 (5) E. A. Carlson and I. I. Oster, Genetics, 47, 561 (1962).

[^1]: (9) In an equivocal reference, O. Eisleb and G. Ehrhart, German Patent 5.)0.762 (Aug, 22, 1930). lists this compound with a melting point (no details/.

[^2]: (0) Suphortel by research Grants CA 02975 and CA 06927 from the National Cancer Institote, National Institutes of Health, U. S. Public Health service.
 (2) L. II, Schmint, "A Survey of Antimalarial Drigs." F. Y. Wiselogle, Ed., Edwarls Bros., Amn Arbor, Mich., 1946.

